A quantitative comparison between C0 and C1 elements for solving the Cahn-Hilliard equation

نویسندگان

  • Liangzhe Zhang
  • Michael R. Tonks
  • Derek Gaston
  • John W. Peterson
  • David Andrs
  • Paul C. Millett
  • Bulent S. Biner
چکیده

The Cahn–Hilliard (CH) equation is a time-dependent fourth-order partial differential equation (PDE). When solving the CH equation via the finite element method (FEM), the domain is discretized by C-continuous basis functions or the equation is split into a pair of second-order PDEs, and discretized via C-continuous basis functions. In the current work, a quantitative comparison between C Hermite and C Lagrange elements is carried out using a continuous Galerkin FEM formulation. The different discretizations are evaluated using the method of manufactured solutions solved with Newton’s method and Jacobian-Free Newton Krylov. It is found that the use of linear Lagrange elements provides the fastest computation time for a given number of elements, while the use of cubic Hermite elements provides the lowest error. The results offer a set of benchmarks to consider when choosing basis functions to solve the CH equation. In addition, an example of microstructure evolution demonstrates the different types of elements for a traditional phase-field model. Published by Elsevier Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

Natural element analysis of the Cahn–Hilliard phase-field model

We present a natural element method to treat higher-order spatial derivatives in the Cahn–Hilliard equation. The Cahn–Hilliard equation is a fourth-order nonlinear partial differential equation that allows to model phase separation in binary mixtures. Standard classical C0-continuous finite element solutions are not suitable because primal variational formulations of fourth-order operators are ...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria C0 Interior Penalty Discontinuous Galerkin approximation of a sixth order Cahn-Hilliard equation modeling microemulsification processes

Microemulsions can be modeled by an initial-boundary value problem for a sixth order Cahn-Hilliard equation. Introducing the chemical potential as a dual variable, a Ciarlet-Raviart type mixed formulation yields a system consisting of a linear second order evolutionary equation and a nonlinear fourth order equation. The spatial discretization is done by a C0 Interior Penalty Discontinuous Galer...

متن کامل

Isogeometric Analysis of the Cahn-Hilliard phase-field model

The Cahn-Hilliard equation involves fourth-order spatial derivatives. Finite element solutions are not common because primal variational formulations of fourthorder operators are well defined and integrable only if the finite element basis functions are piecewise smooth and globally C1-continuous. There are a very limited number of two-dimensional finite elements possessing C1-continuity applic...

متن کامل

The viscous Cahn - Hilliard equation . Part I : computations

The viscous Cahn-Hilliard equation arises as a singular limit of the phase-field model of phase transitions. It contains both the Cahn-Hilliard and Allen-Cahn equations as particular limits. The equation is in gradient form and possesses a compact global atUactor 4 comprising heteroclinic orbits between equilibria. Two classes of wmputati0n.m described,. First heteroclinic o&its on the global a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 236  شماره 

صفحات  -

تاریخ انتشار 2013